Weil Representation, Deligne Sheaf and Proof of the Kurlberg-Rudnick Conjecture

نویسندگان

  • Shamgar Gurevich
  • Joseph Bernstein
چکیده

Consider the two dimensional symplectic torus (T, ω) and an hyperbolic automorphism A of T. The automorphism A is known to be ergodic. In 1980, using a non-trivial procedure called quantization, the physicists J. Hannay and M.V. Berry attached to this automorphism a quantum operator ρ ~ (A) acting on a Hilbert space H~. One of the central questions of ”Quantum Chaos Theory”, in this model, is whether the operator ρ ~ (A) is ”quantum ergodic”? We consider the following two distributions on the algebra A = C∞(T) of smooth complex valued functions on T. The first one is given by the Haar integral: f 7−→ ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weil representation, Delignes sheaf, and proof of the Kurlberg-Rudnick rate conjecture

Let A 2 SL(2;Z) be the “Arnold’s cat map”(or any other hyperbolic element):

متن کامل

The Higher-dimensional Rudnick-kurlberg Conjecture Shamgar Gurevich and Ronny Hadani

In this paper we give a proof of the Hecke quantum unique ergodicity conjecture for the multidimensional Berry-Hannay model. A model of quantum mechanics on the 2n-dimensional torus. This result generalizes the proof of the Rudnick-Kurlberg Conjecture given in [GH3] for the 2-dimensional torus.

متن کامل

Heisenberg Realizations, Eigenfunctions and Proof of the Kurlberg-rudnick Supremum Conjecture

In this paper, proof of the Kurlberg-Rudnick supremum conjecture for the quantum Hannay-Berry model is presented. This conjecture was stated in P. Kurlberg’s lectures at Bologna 2001 and Tel-Aviv 2003. The proof is a primer application of a fundamental solution: all the Hecke eigenfunctions of the quantum system are constructed. The main tool in our construction is the categorification of the c...

متن کامل

The Higher-dimensional Rudnick-kurlberg Conjecture Shamgar Gurevich and Ronny Hadani

In this paper we give a proof of the Hecke quantum unique ergodicity conjecture for the multidimensional Berry-Hannay model. A model of quantum mechanics on the 2n-dimensional torus. This result generalizes the proof of the Rudnick-Kurlberg Conjecture given in [GH3] for the 2-dimensional torus.

متن کامل

Proof of the Kurlberg-rudnick Rate Conjecture

In this paper we present a proof of the Hecke quantum unique ergodicity rate conjecture for the Hannay-Berry model. A model of quantum mechanics on the two-dimensional torus. This conjecture was stated in Z. Rudnick’s lectures at MSRI, Berkeley 1999, and ECM, Barcelona 2000.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006